Respuesta :
Hello!
The answer is:
The area of the shape is: [tex]10units^{2}[/tex]
[tex]TotalArea=10units^{2}[/tex]
Why?
To solve the problem, we must consider that the shape is formed by two right triangles and a square, so, to calculate its area, we need to calculate the areas of the two triangles and square, and then, add them.
So, we are given the following information:
Smallest triangle:
[tex]base=2units\\height=2units[/tex]
Square:
[tex]base=2units\\height=2units[/tex]
Largest triangle:
[tex]base=4\\height=2[/tex]
Calculations
Smallest triangle:
We can calculate the area of a triangle using the following formula:
[tex]A=\frac{base*height}{2}[/tex]
So, substituting, we have:
[tex]A=\frac{2units*2units}{2}=2units^{2}[/tex]
Square:
We can calculate the area of a square using the following formula:
[tex]A=base*height[/tex]
So, substituting, we have:
[tex]A=2units*2units=4units^{2}[/tex]
Largest triangle:
We can calculate the area of a triangle using the following formula:
[tex]A=\frac{base*height}{2}[/tex]
So, substituting, we have:
[tex]A=\frac{4units*2units}{2}=4units^{2}[/tex]
Now, calculating the area of the entire shape, we have:
[tex]TotalArea=SmallestTriangleArea+SquareArea+LargestTriangleArea\\\\TotalArea=2units^{2} +4units^{2} +4units^{2} =10units^{2}[/tex]
Hence, the area of the shape is: [tex]10units^{2}[/tex]
[tex]TotalArea=10units^{2}[/tex]
Have a nice day!