A solution is made by adding 50.0 ml of 0.200 m acetic acid (ka = 1.8 x 10–5) to 50.0 ml of 1.00 x 10–3m hcl. (a) calculate the ph of the solution.

Respuesta :

Answer:

Final pH of the solution: 2.79.

Explanation:

What's in the solution after mixing?

[tex]\displaystyle c = \frac{n}{V}[/tex],

where

  • [tex]c[/tex] is the concentration of the solute,
  • [tex]n[/tex] is the number of moles of the solute, and
  • [tex]V[/tex] is the volume of the solution.

[tex]V(\text{Final}) = 0.050 \;\textbf{L} + 0.050\;\textbf{L} = 0.100\;\textbf{L}[/tex].

Acetic (ethanoic) acid:

[tex]\displaystyle \begin{aligned}n &= c(\text{Before})\cdot V(\text{Before}) \\&= 0.050\;\text{L} \times 0.200\;\text{mol}\cdot\text{L}^{-1}\\ &= 0.0100\;\text{mol}\end{aligned}[/tex].

[tex]\displaystyle \begin{aligned}c(\text{After}) &= \frac{n}{V(\text{After})}\\ &= \frac{0.0100\;\text{mol}}{0.100\;\text{L}}\\ &= 0.100\;\text{mol}\cdot\textbf{L}^{-1}\\ &= 0.100\;\text{M}\end{aligned}[/tex].

Hydrochloric acid HCl:

[tex]\begin{aligned}n &= c(\text{Before})\cdot V(\text{Before})\\ &= 0.050\;\text{L} \times 1.00\times 10^{-3}\;\text{mol}\cdot\text{L}^{-1}\\ &= 5.00\times 10^{-5}\;\text{mol}\end{aligned}[/tex].

[tex]\displaystyle \begin{aligned}c(\text{After}) &= \frac{n}{V(\text{After})}\\ &= \frac{5.00\times 10^{-5}\;\text{mol}}{0.100\;\text{L}}\\ &= 5.00\times 10^{-4}\;\text{mol}\cdot\textbf{L}^{-1}\\ &= 5.00\times 10^{-4}\;\text{M}\end{aligned}[/tex].

HCl is a strong acid. It will completely dissociate in water to produce H⁺. The H⁺ concentration in the solution before acetic acid dissociates shall also be [tex]5.00\times 10^{-4}\;\text{M}[/tex].

The Ka value of acetic acid is considerably small. Acetic acid is a weak acid and will dissociate only partially when dissolved. Construct a RICE table to predict the portion of acetic acid that will dissociate. Let the change in acetic acid concentration be [tex]-x\;\text{M}[/tex]. [tex]x > 0[/tex].

[tex]\begin{array}{c|ccccc}\textbf{R}&\text{CH}_3\text{COOH}\;(aq) &\rightleftharpoons &\text{CH}_3\text{COO}^{-}\;(aq) &+& \text{H}^{+}\;(aq)\\\textbf{I}&0.100\;\text{M} & & & & 5.00\times 10^{-4}\;\text{M}\\\textbf{C}&-x\;\text{M} & & +x\;\text{M} & & +x\;\text{M} \\ \textbf{E}&0.100\;\text{M}-x\;\text{M} & & x\;\text{M} & & 5.00\times 10^{-4}\;\text{M} + x\;\text{M}\end{array}[/tex].

[tex]\displaystyle K_a = \frac{[\text{CH}_3\text{COO}^{-}\;(aq)]\cdot[\text{H}^{+}\;(aq)]}{[\text{CH}_3\text{COOH}\;(aq)]} = \frac{x\cdot(x + 5.00\times 10^{-4})}{0.100 - x}[/tex].

Rewrite as a quadratic equation and solve for [tex]x[/tex]:

[tex]x\cdot(x + 5.00\times 10^{-4}) = (1.8\times 10^{-5} )\cdot (0.100 - x)[/tex]

[tex]x\approx 0.00111[/tex].

The pH of a solution depends on its H⁺ concentration.

At equilibrium

[tex][\text{H}^{+}\;(aq)] = 5.00\times 10^{-4}\;\text{M} + x\;\text{M} = 0.00161\;\text{M}[/tex].

[tex]\text{pH} = -\log{[\text{H}^{+}]} = 2.79[/tex].