Respuesta :
Answer:
Final pH of the solution: 2.79.
Explanation:
What's in the solution after mixing?
[tex]\displaystyle c = \frac{n}{V}[/tex],
where
- [tex]c[/tex] is the concentration of the solute,
- [tex]n[/tex] is the number of moles of the solute, and
- [tex]V[/tex] is the volume of the solution.
[tex]V(\text{Final}) = 0.050 \;\textbf{L} + 0.050\;\textbf{L} = 0.100\;\textbf{L}[/tex].
Acetic (ethanoic) acid:
[tex]\displaystyle \begin{aligned}n &= c(\text{Before})\cdot V(\text{Before}) \\&= 0.050\;\text{L} \times 0.200\;\text{mol}\cdot\text{L}^{-1}\\ &= 0.0100\;\text{mol}\end{aligned}[/tex].
[tex]\displaystyle \begin{aligned}c(\text{After}) &= \frac{n}{V(\text{After})}\\ &= \frac{0.0100\;\text{mol}}{0.100\;\text{L}}\\ &= 0.100\;\text{mol}\cdot\textbf{L}^{-1}\\ &= 0.100\;\text{M}\end{aligned}[/tex].
Hydrochloric acid HCl:
[tex]\begin{aligned}n &= c(\text{Before})\cdot V(\text{Before})\\ &= 0.050\;\text{L} \times 1.00\times 10^{-3}\;\text{mol}\cdot\text{L}^{-1}\\ &= 5.00\times 10^{-5}\;\text{mol}\end{aligned}[/tex].
[tex]\displaystyle \begin{aligned}c(\text{After}) &= \frac{n}{V(\text{After})}\\ &= \frac{5.00\times 10^{-5}\;\text{mol}}{0.100\;\text{L}}\\ &= 5.00\times 10^{-4}\;\text{mol}\cdot\textbf{L}^{-1}\\ &= 5.00\times 10^{-4}\;\text{M}\end{aligned}[/tex].
HCl is a strong acid. It will completely dissociate in water to produce H⁺. The H⁺ concentration in the solution before acetic acid dissociates shall also be [tex]5.00\times 10^{-4}\;\text{M}[/tex].
The Ka value of acetic acid is considerably small. Acetic acid is a weak acid and will dissociate only partially when dissolved. Construct a RICE table to predict the portion of acetic acid that will dissociate. Let the change in acetic acid concentration be [tex]-x\;\text{M}[/tex]. [tex]x > 0[/tex].
[tex]\begin{array}{c|ccccc}\textbf{R}&\text{CH}_3\text{COOH}\;(aq) &\rightleftharpoons &\text{CH}_3\text{COO}^{-}\;(aq) &+& \text{H}^{+}\;(aq)\\\textbf{I}&0.100\;\text{M} & & & & 5.00\times 10^{-4}\;\text{M}\\\textbf{C}&-x\;\text{M} & & +x\;\text{M} & & +x\;\text{M} \\ \textbf{E}&0.100\;\text{M}-x\;\text{M} & & x\;\text{M} & & 5.00\times 10^{-4}\;\text{M} + x\;\text{M}\end{array}[/tex].
[tex]\displaystyle K_a = \frac{[\text{CH}_3\text{COO}^{-}\;(aq)]\cdot[\text{H}^{+}\;(aq)]}{[\text{CH}_3\text{COOH}\;(aq)]} = \frac{x\cdot(x + 5.00\times 10^{-4})}{0.100 - x}[/tex].
Rewrite as a quadratic equation and solve for [tex]x[/tex]:
[tex]x\cdot(x + 5.00\times 10^{-4}) = (1.8\times 10^{-5} )\cdot (0.100 - x)[/tex]
[tex]x\approx 0.00111[/tex].
The pH of a solution depends on its H⁺ concentration.
At equilibrium
[tex][\text{H}^{+}\;(aq)] = 5.00\times 10^{-4}\;\text{M} + x\;\text{M} = 0.00161\;\text{M}[/tex].
[tex]\text{pH} = -\log{[\text{H}^{+}]} = 2.79[/tex].