Respuesta :

ANSWER

[tex]\tan(\sin^{ - 1}( \frac{x}{2} )) = \frac{x}{ \sqrt{4 - {x}^{2} } } \: \:where \: \: x \ne \pm2[/tex]

EXPLANATION

We want to find the exact value of

[tex] \tan( \sin^{ - 1}( \frac{x}{2} ) ) [/tex]

Let

[tex]y = \sin^{ - 1}( \frac{x}{2} )[/tex]

This implies that

[tex] \sin(y) = \frac{x}{2} [/tex]

This implies that,

The opposite is x units and the hypotenuse is 2 units.

The adjacent side is found using Pythagoras Theorem.

[tex] {a}^{2} + {x}^{2} = {2}^{2} [/tex]

[tex]{a}^{2} + {x}^{2} = 4[/tex]

[tex]{a}^{2} = 4 - {x}^{2}[/tex]

[tex]a= \sqrt{4 - {x}^{2}} [/tex]

This implies that,

[tex] \tan(y) = \frac{opposite}{adjacent} [/tex]

[tex]\tan(y) = \frac{x}{ \sqrt{4 - {x}^{2} } } [/tex]

But

[tex]y = \sin^{ - 1}( \frac{x}{2} )[/tex]

This implies that,

[tex]\tan(\sin^{ - 1}( \frac{x}{2} )) = \frac{x}{ \sqrt{4 - {x}^{2} } } \: \:where \: \: x \ne \pm2[/tex]