Respuesta :

Answer:

{0, 4 and -3}

Step-by-step explanation:

f(x)=x^3-x^2-12x can be factored, starting by taking out the 'x' factor:

f(x)=x^3-x^2-12x = x(x^2 - x - 12), and then by factoring the quadratic:

f(x) = x(x - 4)(x + 3) = 0

Then the zeros are {0, 4 and -3}.

Answer:

The zeros are;

x=-3,x=0, and x=4

Step-by-step explanation:

The given polynomial is

[tex]f(x)=x^3-x^2-12x[/tex]

We equate the function to zero to obtain;

[tex]fx^3-x^2-12x=0[/tex]

We factor the GCF to get;

[tex]x(x^2-x-12)=0[/tex]

We split the quadratic trinomial to get;

[tex]x(x^2-4x+3x-12)=0[/tex]

Factor by grouping

[tex]x(x(x-4)+3(x-4))=0[/tex]

[tex]x(x-4)(x+3)=0[/tex]

The zeros are;

x=-3,x=0, and x=4