Respuesta :
Answer:
{0, 4 and -3}
Step-by-step explanation:
f(x)=x^3-x^2-12x can be factored, starting by taking out the 'x' factor:
f(x)=x^3-x^2-12x = x(x^2 - x - 12), and then by factoring the quadratic:
f(x) = x(x - 4)(x + 3) = 0
Then the zeros are {0, 4 and -3}.
Answer:
The zeros are;
x=-3,x=0, and x=4
Step-by-step explanation:
The given polynomial is
[tex]f(x)=x^3-x^2-12x[/tex]
We equate the function to zero to obtain;
[tex]fx^3-x^2-12x=0[/tex]
We factor the GCF to get;
[tex]x(x^2-x-12)=0[/tex]
We split the quadratic trinomial to get;
[tex]x(x^2-4x+3x-12)=0[/tex]
Factor by grouping
[tex]x(x(x-4)+3(x-4))=0[/tex]
[tex]x(x-4)(x+3)=0[/tex]
The zeros are;
x=-3,x=0, and x=4