Answer:
The first five terms are;
-3,-7,11,-29,69
Step-by-step explanation:
The recursive definition of the sequence is
[tex]a_1=-3,[/tex], [tex]a_2=-7[/tex] and [tex]a_n=a_{n-2}-2a_{n-1}[/tex].
When n=3, we obtain;
[tex]a_3=a_{3-2}-2a_{3-1}[/tex].
[tex]\implies a_3=a_{1}-2a_{2}[/tex].
[tex]\implies a_3=-3-2(-7)[/tex].
[tex]\implies a_3=11[/tex].
When n=4
[tex]\implies a_4=a_{2}-2a_{3}[/tex].
[tex]\implies a_4=-7-2(11)=-29[/tex].
When n=5
[tex]\implies a_5=a_{3}-2a_{4}[/tex].
[tex]\implies a_4=11-2(-29)=69[/tex].
Therefore the first five terms are;
-3,-7,11,-29,69