Respuesta :

ANSWER

B.

[tex] - \cos^{2} x [/tex]

EXPLANATION

The given expression is

(sin x + 1)(sin x − 1)

Note that:

[tex](x + 1)(x - 1) = {x}^{2} - 1[/tex]

This implies that,

[tex]( \sin \: x + 1)( \sin \: x - 1) = \sin^{2} x - 1[/tex]

We can factor -1 on the right hand side to get,

[tex]( \sin \: x + 1)( \sin \: x - 1) = - (1 - \sin^{2} x )[/tex]

Note that from the Pythagorean Identity

[tex]1 - \sin^{2} x = \cos^{2} x[/tex]

We apply this identity to obtain:

[tex]( \sin \: x + 1)( \sin \: x - 1) = - \cos^{2} x [/tex]

The correct choice is B