ANSWER
18. No extraneous solution.
19. The extraneous solution is x=-2
EXPLANATION
18. The given radical equation is:
[tex] \sqrt{3x - 2} = x[/tex]
Solving this radical equation yields
[tex]x=1,x=2[/tex]
We check for an extraneous solution by substituting each value into the equation.
Checking for x=1,
[tex] \sqrt{3 \times 1 - 2} = 1[/tex]
[tex]\sqrt{3- 2} = 1[/tex]
[tex]\sqrt{1} = 1[/tex]
[tex]1 = 1[/tex]
This is true.
Checking for x=2
[tex]\sqrt{3 \times 2- 2} = 2[/tex]
[tex]\sqrt{6- 2} = 2[/tex]
[tex]\sqrt{4} = 2[/tex]
[tex]2 = 2[/tex]
This is also true. Hence there is no extraneous solution.
19. The given radical equation is:
[tex] \sqrt{x + 6} = x[/tex]
Solving this equation yields,
[tex]x=3,x=-2[/tex]
Checking for x=3,.
[tex]\sqrt{3+ 6} = 3[/tex]
[tex] \sqrt{9} = 3[/tex]
3=3.
This is a true solution.
Checking for x=-2.
[tex]\sqrt{ - 2 + 6} = - 2[/tex]
[tex] \sqrt{4} = - 2[/tex]
[tex]2 \ne - 2[/tex]
Hence x=-2 is an extraneous solution.