Answer:
[tex]\dfrac{9}{64}[/tex]
Step-by-step explanation:
There are 12 face cards in a deck of standard playing cards and 20 even numbered cards, in total 32 cards.
1. The probabilty that the first drawn card is face card is
[tex]p_1=\dfrac{12}{32}=\dfrac{3}{8}.[/tex]
2. The probabilty that the second drawn card is an even numbered card (even numbered cards are 6, 8, 10 - 12 in total, odd numbered cards are 7, 9 - 8 in total) is
[tex]p_2=\dfrac{12}{32}=\dfrac{3}{8}.[/tex]
3. The probability that the first drawn card is a face card and the second drawn card is an even numbered card is
[tex]p_1\cdot p_2=\dfrac{3}{8}\cdot \dfrac{3}{8}=\dfrac{9}{64}.[/tex]