Given z1 = -3
[tex] \sqrt{3} [/tex]
 + 3i and z2 = 6cos150° + 6isin150°, use complete sentences to explain why z1 = z2. Explain the steps of your work for full credit.


Respuesta :

Answer:

See explanation

Step-by-step explanation:

The given complex number are:

[tex]z_1=-3\sqrt{3}+3i[/tex]

and

[tex]z_2=6\cos 150\degree+6i\sin 150\degree[/tex]

When we rewrite [tex]z_1=-3\sqrt{3}+3i[/tex] in complex form, we obtain;

[tex]z_1=r(\cos \theta+i\sin \theta)[/tex]

where

[tex]r=\sqrt{(-3\sqrt{3})^2+3^2 }=\sqrt{36}=6[/tex]

and

[tex]\theta=tan^{-1}(\frac{y}{x})[/tex]

[tex]\implies \theta=tan^{-1}(\frac{-3\sqrt{3}}{3})=150\degree[/tex]

Hence,

[tex]z_1=6(\cos 150\degree+i\sin 150\degree)[/tex]

[tex]z_1=6\cos 150\degree+6i\sin 150\degree[/tex]

Hence

[tex]z_1=z_2[/tex]