Respuesta :
Answer:
[tex]x=66[/tex]
Step-by-step explanation:
Since MN and MP are tangent to circle O, they create 90° angles at the points of intersection.
We also know that this is a quadralateral, so the interior angles add up to 360.
We can make an equation with this information.
[tex]114+90+90+x=360[/tex]
[tex]294+x=360[/tex]
[tex]x=66[/tex]
By property of tangent, the value of x is Option(C) 66° .
What are the properties of tangent ?
The properties of tangent are as follows -
- Any tangent when intersect to a circle at the point, it subtends an angle of 90° at the interior segment.
- The total sum of the interior angle of the intersection of tangent at the points is always equal to 360° .
How to find the given angle in the triangle ?
Given that point O is the center if the circle also given MN and MP are tangent to O.
Thus by the property of tangent, ∠OPM and ∠ONM is equal to 90° as both the tangents intersect at the points P and N .
Also from property, we know that -
⇒ ∠ONM + ∠OPM + 114° + x° = 360°
⇒ 90° + 90° + 114° + x° = 360°
⇒ 294° + x° = 360°
∴ x = 360° - 294° = 66°
Therefore, by property of tangent, the value of x is Option(C) 66° .
To learn more about property of tangent, refer -
https://brainly.com/question/8705027
#SPJ2