Answer:
[tex]2sin(x)*cos(x)*sec(x)*csc (x)=2[/tex]
Step-by-step explanation:
Remember the identities:
[tex]sec(x)=\frac{1}{cos(x)}\\\\csc(x)=\frac{1}{sin(x)}[/tex]
Ginven the expression:
[tex]2sin(x)*cos(x)*sec(x)*csc (x)[/tex]
You need to substitute [tex]sec(x)=\frac{1}{cos(x)}[/tex] and [tex]csc(x)=\frac{1}{sin(x)}[/tex] into it:
[tex]2sin(x)*cos(x)*sec(x)*csc (x)=2sin(x)*cos(x)*\frac{1}{cos(x)}*\frac{1}{sin(x)}[/tex]
Now, you need to simplify.
Remember that:
[tex]\frac{a}{b}*\frac{c}{d}=\frac{a*c}{b*d}[/tex]
And:
[tex]\frac{a}{a}=1[/tex]
Then, you get:
[tex]=\frac{2sin(x)*cos(x)}{cos(x)*sin(x)}}=2[/tex]