Respuesta :

Answer:

[tex]2sin(x)*cos(x)*sec(x)*csc (x)=2[/tex]

Step-by-step explanation:

Remember the identities:

[tex]sec(x)=\frac{1}{cos(x)}\\\\csc(x)=\frac{1}{sin(x)}[/tex]

Ginven the expression:

[tex]2sin(x)*cos(x)*sec(x)*csc (x)[/tex]

You need to substitute [tex]sec(x)=\frac{1}{cos(x)}[/tex] and [tex]csc(x)=\frac{1}{sin(x)}[/tex] into it:

[tex]2sin(x)*cos(x)*sec(x)*csc (x)=2sin(x)*cos(x)*\frac{1}{cos(x)}*\frac{1}{sin(x)}[/tex]

Now, you need to simplify.

Remember that:

[tex]\frac{a}{b}*\frac{c}{d}=\frac{a*c}{b*d}[/tex]

And:

[tex]\frac{a}{a}=1[/tex]

Then, you get:

[tex]=\frac{2sin(x)*cos(x)}{cos(x)*sin(x)}}=2[/tex]