The vertices of triangle EFG are listed below.
What is the approximate perimeter of triangle EFG?

A. 21.21 units
B. 12.21 units
C. 36.05 units
D. 12.16 units

The vertices of triangle EFG are listed below What is the approximate perimeter of triangle EFG A 2121 units B 1221 units C 3605 units D 1216 units class=

Respuesta :

Answer:

Option A. [tex]21.21\ units[/tex]

Step-by-step explanation:

we know that

The perimeter of a triangle is equal to the sum of its three side lengths

so

[tex]P=EF+FG+EG[/tex]

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

we have

[tex]E(5,4),F(9,1),G(5,-5)[/tex]

step 1

Find the distance EF

[tex]E(5,4),F(9,1)[/tex]

substitute in the formula

[tex]EF=\sqrt{(1-4)^{2}+(9-5)^{2}}[/tex]

[tex]EF=\sqrt{(-3)^{2}+(4)^{2}}[/tex]

[tex]EF=\sqrt{25}[/tex]

[tex]EF=5\ units[/tex]

step 2

Find the distance FG

[tex]F(9,1),G(5,-5)[/tex]

substitute in the formula

[tex]FG=\sqrt{(-5-1)^{2}+(5-9)^{2}}[/tex]

[tex]FG=\sqrt{(-6)^{2}+(-4)^{2}}[/tex]

[tex]FG=\sqrt{52}[/tex]

[tex]FG=7.21\ units[/tex]

step 3

Find the distance EG

[tex]E(5,4),G(5,-5)[/tex]

substitute in the formula

[tex]EG=\sqrt{(-5-4)^{2}+(5-5)^{2}}[/tex]

[tex]EG=\sqrt{(-9)^{2}+(0)^{2}}[/tex]

[tex]EG=\sqrt{81}[/tex]

[tex]EG=9\ units[/tex]  

step 4

Find the perimeter

[tex]P=EF+FG+EG[/tex]

[tex]P=5+7.21+9=21.21\ units[/tex]