Respuesta :

Answer:

 The direction angle of vector v is equal to  [tex]9.5\°[/tex]

Step-by-step explanation:

Let

[tex]A(-5,0),B(7,2)[/tex]

The vector v is given by

[tex]v=B-A[/tex]

[tex]v=(7, 2) - (-5, 0)[/tex]

[tex]v=((7 - (- 5)), (2-0))[/tex]

[tex]v=(12, 2)[/tex]

 Remember that

The direction angle of the vector is equal to

 [tex]tan (\theta) =\frac{y}{x}[/tex]

substitute the values

 [tex]tan (\theta) =\frac{2}{12}[/tex]

 [tex]\theta=arctan(\frac{2}{12})=9.5\°[/tex]

Answer:

The direction angle of vector v is equal to  9.5\°

Step-by-step explanation:

Let

A(-5,0),B(7,2)

The vector v is given by

v=B-A

v=(7, 2) - (-5, 0)

v=((7 - (- 5)), (2-0))

v=(12, 2)

Remember that

The direction angle of the vector is equal to

tan (\theta) =\frac{y}{x}

substitute the values

tan (\theta) =\frac{2}{12}

\theta=arctan(\frac{2}{12})=9.5\°

Step-by-step explanation:

put that in a computer calc and  it shoud give u the awnser