This ODE is exact because
[tex]\dfrac{\partial(2y^2+3x)}{\partial y}=4y[/tex]
[tex]\dfrac{\partial(4xy)}{\partial x}=4y[/tex]
So we're looking for a solution [tex]\Psi(x,y)=C[/tex] such that
[tex]\dfrac{\partial\Psi}{\partial x}=2y^2+3x[/tex]
[tex]\dfrac{\partial\Psi}{\partial y}=4xy[/tex]
Integrate both sides of the first PDE with respect to [tex]x[/tex]:
[tex]\displaystyle\int\frac{\partial\Psi}{\partial x}=\int(2y^2+3x)\,\mathrm dx[/tex]
[tex]\Psi=2xy^2+3x+g(y)[/tex]
Differentiate both sides with respect to [tex]y[/tex]:
[tex]\dfrac{\partial\Psi}{\partial y}=4xy+\dfrac{\mathrm dg}{\mathrm dy}=4xy[/tex]
[tex]\implies\dfrac{\mathrm dg}{\mathrm dy}=0\imples g(y)=C[/tex]
So the solution to the ODE is
[tex]2xy^2+3x=C[/tex]