The answer is:
The rewritten expression is:
[tex]cos(2x)+sin(x)=(cos(x)+sin(x))*(cos(x)-sin(x))+sin(x)[/tex]
To solve this problem we need to use the trigonometric identity of the double angle for the cosine which states that:
[tex]cos(2\alpha)=cos^{2}(\alpha)-sin^{2}(\alpha)[/tex]
Also, if we want to rewrite only with terms of cos(x) and sin(x), we can apply the following property:
[tex](a^{2} -b^{2})=(a+b)(a-b)[/tex]
So, rewriting the trigonometric equation, we have:
[tex]cos^{2}(\alpha)-sin^{2}(\alpha)=(cos(x)+sin(x))*(cos(x)-sin(x))[/tex]
Then, we are given the expression:
[tex]cos(2x)+sin(x)[/tex]
Now, rewriting the given expression with only sin(x) and cos(x), we have:
[tex]cos(2x)+sin(x)=(cos(x)+sin(x))*(cos(x)-sin(x))+sin(x)[/tex]
Hence, the answer is:
[tex]cos(2x)+sin(x)=(cos(x)+sin(x))*(cos(x)-sin(x))+sin(x)[/tex]
Have a nice day!