Respuesta :

Hello!

The answer is:

The rewritten expression is:

[tex]cos(2x)+sin(x)=(cos(x)+sin(x))*(cos(x)-sin(x))+sin(x)[/tex]

Why?

To solve this problem we need to use the trigonometric identity of the double angle for the cosine which states that:

[tex]cos(2\alpha)=cos^{2}(\alpha)-sin^{2}(\alpha)[/tex]

Also, if we want to rewrite only with terms of cos(x) and sin(x), we can apply the following property:

[tex](a^{2} -b^{2})=(a+b)(a-b)[/tex]

So, rewriting the trigonometric equation, we have:

[tex]cos^{2}(\alpha)-sin^{2}(\alpha)=(cos(x)+sin(x))*(cos(x)-sin(x))[/tex]

Then, we are given the expression:

[tex]cos(2x)+sin(x)[/tex]

Now, rewriting the given expression with only sin(x) and cos(x), we have:

[tex]cos(2x)+sin(x)=(cos(x)+sin(x))*(cos(x)-sin(x))+sin(x)[/tex]

Hence, the answer is:

[tex]cos(2x)+sin(x)=(cos(x)+sin(x))*(cos(x)-sin(x))+sin(x)[/tex]

Have a nice day!