Respuesta :
Answer:
Part 1) [tex]9x-7y=-25[/tex]
Part 2) [tex]2x-y=2[/tex]
Part 3) [tex]x+8y=22[/tex]
Part 4) [tex]x+8y=35[/tex]
Part 5) [tex]3x-4y=2[/tex]
Part 6) [tex]10x+6y=39[/tex]
Part 7) [tex]x-5y=-6[/tex]
Part 8)
case A) The equation of the diagonal AC is [tex]x+y=0[/tex]
case B) The equation of the diagonal BD is [tex]x-y=0[/tex]
Step-by-step explanation:
Part 1)
step 1
Find the midpoint
The formula to calculate the midpoint between two points is equal to
[tex]M=(\frac{x1+x2}{2},\frac{y1+y2}{2})[/tex]
substitute the values
[tex]M=(\frac{2-6}{2},\frac{-3+5}{2})[/tex]
[tex]M=(-2,1)[/tex]
step 2
The equation of the line into point slope form is equal to
[tex]y-1=\frac{9}{7}(x+2)\\ \\y=\frac{9}{7}x+\frac{18}{7}+1\\ \\y=\frac{9}{7}x+\frac{25}{7}[/tex]
step 3
Convert to standard form
Remember that the equation of the line into standard form is equal to
[tex]Ax+By=C[/tex]
where
A is a positive integer, and B, and C are integers
[tex]y=\frac{9}{7}x+\frac{25}{7}[/tex]
Multiply by 7 both sides
[tex]7y=9x+25[/tex]
[tex]9x-7y=-25[/tex]
Part 2)
step 1
Find the midpoint
The formula to calculate the midpoint between two points is equal to
[tex]M=(\frac{x1+x2}{2},\frac{y1+y2}{2})[/tex]
substitute the values
[tex]M=(\frac{1+5}{2},\frac{0-2}{2})[/tex]
[tex]M=(3,-1)[/tex]
step 2
Find the slope
The slope between two points is equal to
[tex]m=\frac{-2-0}{5-1}=-\frac{1}{2}[/tex]
step 3
we know that
If two lines are perpendicular, then the product of their slopes is equal to -1
Find the slope of the line perpendicular to the segment joining the given points
[tex]m1=-\frac{1}{2}[/tex]
[tex]m1*m2=-1[/tex]
therefore
[tex]m2=2[/tex]
step 4
The equation of the line into point slope form is equal to
[tex]y-y1=m(x-x1)[/tex]
we have
[tex]m=2[/tex] and point [tex](1,0)[/tex]
[tex]y-0=2(x-1)\\ \\y=2x-2[/tex]
step 5
Convert to standard form
Remember that the equation of the line into standard form is equal to
[tex]Ax+By=C[/tex]
where
A is a positive integer, and B, and C are integers
[tex]y=2x-2[/tex]
[tex]2x-y=2[/tex]
Part 3)
In this problem AB and BC are the legs of the right triangle (plot the figure)
step 1
Find the midpoint AB
[tex]M1=(\frac{-5+1}{2},\frac{5+1}{2})[/tex]
[tex]M1=(-2,3)[/tex]
step 2
Find the midpoint BC
[tex]M2=(\frac{1+3}{2},\frac{1+4}{2})[/tex]
[tex]M2=(2,2.5)[/tex]
step 3
Find the slope M1M2
The slope between two points is equal to
[tex]m=\frac{2.5-3}{2+2}=-\frac{1}{8}[/tex]
step 4
The equation of the line into point slope form is equal to
[tex]y-y1=m(x-x1)[/tex]
we have
[tex]m=-\frac{1}{8}[/tex] and point [tex](-2,3)[/tex]
[tex]y-3=-\frac{1}{8}(x+2)\\ \\y=-\frac{1}{8}x-\frac{1}{4}+3\\ \\y=-\frac{1}{8}x+\frac{11}{4}[/tex]
step 5
Convert to standard form
Remember that the equation of the line into standard form is equal to
[tex]Ax+By=C[/tex]
where
A is a positive integer, and B, and C are integers
[tex]y=-\frac{1}{8}x+\frac{11}{4}[/tex]
Multiply by 8 both sides
[tex]8y=-x+22[/tex]
[tex]x+8y=22[/tex]
Part 4)
In this problem the hypotenuse is AC (plot the figure)
step 1
Find the slope AC
The slope between two points is equal to
[tex]m=\frac{4-5}{3+5}=-\frac{1}{8}[/tex]
step 2
The equation of the line into point slope form is equal to
[tex]y-y1=m(x-x1)[/tex]
we have
[tex]m=-\frac{1}{8}[/tex] and point [tex](3,4)[/tex]
[tex]y-4=-\frac{1}{8}(x-3)[/tex]
[tex]y=-\frac{1}{8}x+\frac{3}{8}+4[/tex]
[tex]y=-\frac{1}{8}x+\frac{35}{8}[/tex]
step 3
Convert to standard form
Remember that the equation of the line into standard form is equal to
[tex]Ax+By=C[/tex]
where
A is a positive integer, and B, and C are integers
[tex]y=-\frac{1}{8}x+\frac{35}{8}[/tex]
Multiply by 8 both sides
[tex]8y=-x+35[/tex]
[tex]x+8y=35[/tex]
Part 5)
The longer diagonal is the segment BD (plot the figure)
step 1
Find the slope BD
The slope between two points is equal to
[tex]m=\frac{4+2}{6+2}=\frac{3}{4}[/tex]
step 2
The equation of the line into point slope form is equal to
[tex]y-y1=m(x-x1)[/tex]
we have
[tex]m=\frac{3}{4}[/tex] and point [tex](-2,-2)[/tex]
[tex]y+2=\frac{3}{4}(x+2)[/tex]
[tex]y=\frac{3}{4}x+\frac{6}{4}-2[/tex]
[tex]y=\frac{3}{4}x-\frac{2}{4}[/tex]
step 3
Convert to standard form
Remember that the equation of the line into standard form is equal to
[tex]Ax+By=C[/tex]
where
A is a positive integer, and B, and C are integers
[tex]y=\frac{3}{4}x-\frac{2}{4}[/tex]
Multiply by 4 both sides
[tex]4y=3x-2[/tex]
[tex]3x-4y=2[/tex]
Note The complete answers in the attached file