What is the length of the third side of the window frame below?

(Figure is not drawn to scale.)

A picture of a right triangular window frame is shown. The longest side has length labeled as 39 inches. The height of the frame is labeled as 36 inches.

15 inches
27 inches
25 inches
32 inches

Respuesta :

Answer:

15 inches

Step-by-step explanation:

The longest side of the right triangular window frame is 39 inches

The height is 36 inches

Let the base of the window frame be x inches

So according to Pythagoras theorem,

x² + 36² = 39²

x² = 39² - 36² = 225

x = [tex]\sqrt{225}[/tex] = 15 inches

The third side of the window frame is therefore equal to 15 inches.

The length of the third side of the window frame will be 15 inches. Then the correct option is A.

What is a Pythagoras theorem?

The Pythagoras theorem states that the sum of two squares equals the squared of the longest side.

The Pythagoras theorem formula is given as

H² = P² + B²

The longest side has a length labeled as 39 inches. The height of the frame is labeled as 36 inches.

Let x be the length of the third side of the window frame. Then we have

39² = x² + 36²

 x² = 39² - 36²

 x² = 1521 - 1296

 x² = 225

  x = 15 inches

Then the correct option is A.

More about the Pythagoras theorem link is given below.

https://brainly.com/question/343682

#SPJ2