Respuesta :

gmany

Answer:

[tex]\large\boxed{6x^2-4x-5(2x^2+3x)=-4x^2-19x}[/tex]

Step-by-step explanation:

[tex]6x^2-4x-5(2x^2+3x)\qquad\text{use the distributive property}\\\\=6x^2-4x+(-5)(2x^2)+(-5)(3x)\\\\=6x^2-4x-10x^2-15x\qquad\text{combine like terms}\\\\=(6x^2-10x^2)+(-4x-15x)\\\\=-4x^2-19x[/tex]

Answer:

Step-by-step explanation:

I learned to solve these with a box method.

        6x^2     -4x     -5

2x^2  

3x

with this method you add the matching terms

       6x^2     -4x     -5

2x^2  | 1 | 2 | 3

3x      | 2 | 3 | 4

          6x^2     -4x     -5

2x^2 | 12x^4 | -8x^3 | -10x^2

3x     | 18x^3 | -12x^2 | -15x

12x^4 + 10x^3 - 22x^2 - 15x