Verify that the Divergence Theorem is true for the vector field F on the region E. Give the flux. F(x, y, z) = x2i + xyj + zk, E is the solid bounded by the paraboloid z = 25 − x2 − y2 and the xy-plane.

Respuesta :

Parameterize the paraboloidal part by

[tex]\vec r(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec\jmath+(25-u^2)\,\vec k[/tex]

and the planar part by

[tex]\vec s(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec\jmath[/tex]

both with [tex]0\le u\le5[/tex] and [tex]0\le v\le2\pi[/tex].

For the paraboloidal part, take the normal vector to be

[tex]\vec r_u\times\vec r_v=2u^2\cos v\,\vec\imath+2u^2\sin v\,\vec\jmath+u\,\vec k[/tex]

and for the planar part,

[tex]\vec s_v\times\vec s_u=-u\,\vec k[/tex]

The flux over the paraboloidal part (call it [tex]S_1[/tex]) is

[tex]\displaystyle\iint_{S_1}\vec F\cdot\mathrm d\vec S[/tex]

[tex]=\displaystyle\int_0^{2\pi}\int_0^5(u^2\cos^2v\,\vec\imath+u^2\cos v\sin v\,\vec\jmath+(25-u^2)\,\vec k)\cdot(\vec r_u\times\vec r_v)\,\mathrm du\,\mathrm dv[/tex]

[tex]=\displaystyle\int_0^{2\pi}\int_0^5(25u-u^3+2u^4\cos v)\,\mathrm du\,\mathrm dv=\frac{625\pi}2[/tex]

and over the planar part (call it [tex]S_2[/tex]),

[tex]\displaystyle\iint_{S_2}\vec F\cdot\mathrm d\vec S[/tex]

[tex]=\displaystyle\int_0^{2\pi}\int_0^5(u^2\cos^2v\,\vec\imath+u^2\cos v\sin v\,\vec\jmath)\cdot(\vec s_v\times\vec s_u)\,\mathrm du\,\mathrm dv[/tex]

but this integral vanishes because the dot product is 0. So the total flux over [tex]\partial E[/tex] (the boundary of the given region [tex]E[/tex]) is [tex]\dfrac{625\pi}2[/tex]

###

Confirming with the divergence theorem: the divergence of the given vector field is

[tex]\nabla\cdot\vec F=2x+x+1=3x+1[/tex]

By the divergence theorem, the flux is equivalent to the volume integral

[tex]\displaystyle\iiint_E(3x+1)\,\mathrm dV[/tex]

[tex]=\displaystyle\int_0^{2\pi}\int_0^5\int_0^{25-r^2}(3r\cos\theta+1)r\,\mathrm dz\,\mathrm dr\,\mathrm d\theta=\frac{625\pi}2[/tex]

(where the integral was set up with cylindrical coordinates)

ACCESS MORE