Respuesta :
(a) 0.0021 s, 2926.5 rad/s
The frequency of the B note is
[tex]f= 466 Hz[/tex]
The time taken to make one complete cycle is equal to the period of the wave, which is the reciprocal of the frequency:
[tex]T=\frac{1}{f}=\frac{1}{466 Hz}=0.0021 s[/tex]
The angular frequency instead is given by
[tex]\omega = 2\pi f[/tex]
And substituting
f = 466 Hz
We find
[tex]\omega = 2\pi (466 Hz)=2926.5 rad/s[/tex]
(b) 20 Hz, 125.6 rad/s
In this case, the period of the sound wave is
T = 50.0 ms = 0.050 s
So the frequency is equal to the reciprocal of the period:
[tex]f=\frac{1}{T}=\frac{1}{0.050 s}=20 Hz[/tex]
While the angular frequency is given by:
[tex]\omega = 2\pi f = 2 \pi (20 Hz)=125.6 rad/s[/tex]
(c) [tex]4.30\cdot 10^{14} Hz, 7.48\cdot 1^{14} Hz, 2.33\cdot 10^{-15} s, 1.34\cdot 10^{-15}s[/tex]
The minimum angular frequency of the light wave is
[tex]\omega_1 = 2.7\cdot 10^{15}rad/s[/tex]
so the corresponding frequency is
[tex]f=\frac{\omega}{2 \pi}=\frac{2.7\cdot 10^{15}rad/s}{2\pi}=4.30\cdot 10^{14} Hz[/tex]
and the period is the reciprocal of the frequency:
[tex]T=\frac{1}{f}=\frac{1}{4.30\cdot 10^{14}Hz}=2.33\cdot 10^{-15}s[/tex]
The maximum angular frequency of the light wave is
[tex]\omega_2 = 4.7\cdot 10^{15}rad/s[/tex]
so the corresponding frequency is
[tex]f=\frac{\omega}{2 \pi}=\frac{4.7\cdot 10^{15}rad/s}{2\pi}=7.48\cdot 10^{14} Hz[/tex]
and the period is the reciprocal of the frequency:
[tex]T=\frac{1}{f}=\frac{1}{7.48\cdot 10^{14}Hz}=1.34\cdot 10^{-15}s[/tex]
(d) [tex]2.0\cdot 10^{-7}s, 3.14\cdot 10^{7} rad/s[/tex]
In this case, the frequency is
[tex]f=5.0 MHz = 5.0 \cdot 10^6 Hz[/tex]
So the period in this case is
[tex]T=\frac{1}{f}=\frac{1}{5.0\cdot 10^6 Hz}=2.0 \cdot 10^{-7} s[/tex]
While the angular frequency is given by
[tex]\omega = 2\pi f=2 \pi (5.0\cdot 10^{6}Hz)=3.14\cdot 10^{7} rad/s[/tex]