contestada

Sonji correctly added 2p+1/p-8 and 3p-3/4p and got 8p^2+4p+3p-27p+24/(p-8)(4p). What is the simplified sum?

Respuesta :

Answer:

The simplified sum is [tex]\frac{11p^{2}-23p+24}{(p-8)4p}[/tex]

Step-by-step explanation:  

we have

[tex]\frac{2p+1}{p-8}+\frac{3p-3}{4p}=\frac{4p(2p+1)+(p-8)(3p-3)}{(p-8)4p}\\ \\=\frac{8p^{2}+4p+3p^{2}-3p-24p+24}{(p-8)4p}\\ \\ =\frac{11p^{2}-23p+24}{(p-8)4p}[/tex]

Answer:

[tex]\frac{11p^2-23p+24}{4p(p-8)}[/tex]

Step-by-step explanation:

Given expression,

[tex]\frac{2p+1}{p-8}+\frac{3p-3}{4p}[/tex]

[tex]=\frac{4p(2p+1)+(p-8)(3p-3)}{4p(p-8)}[/tex]

[tex]=\frac{8p^2+4p+3p^2-24p-3p+24}{4p(p-8)}[/tex]

By combining like terms,

[tex]=\frac{11p^2-23p+24}{4p(p-8)}[/tex]

Since, further simplification is not possible because numerator is not the perfect square trinomial,

Hence, the required simplified sum is,

[tex]\frac{11p^2-23p+24}{4p(p-8)}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico