A) 8.11 m/s
For a satellite orbiting around an asteroid, the centripetal force is provided by the gravitational attraction between the satellite and the asteroid:
[tex]m\frac{v^2}{(R+h)}=\frac{GMm}{(R+h)^2}[/tex]
where
m is the satellite's mass
v is the speed
R is the radius of the asteroide
h is the altitude of the satellite
G is the gravitational constant
M is the mass of the asteroid
Solving the equation for v, we find
[tex]v=\sqrt{\frac{GM}{R+h}}[/tex]
where:
[tex]G=6.67\cdot 10^{-11} m^3 kg^{-1}s^{-2}[/tex]
[tex]M=1.40\cdot 10^{16}kg[/tex]
[tex]R=8.20 km=8200 m[/tex]
[tex]h=6.00 km = 6000 m[/tex]
Substituting into the formula,
[tex]v=\sqrt{\frac{(6.67\cdot 10^{-11})(1.40\cdot 10^{16}kg)}{8200 m+6000 m}}=8.11 m/s[/tex]
B) 11.47 m/s
The escape speed of an object from the surface of a planet/asteroid is given by
[tex]v=\sqrt{\frac{2GM}{R+h}}[/tex]
where:
[tex]G=6.67\cdot 10^{-11} m^3 kg^{-1}s^{-2}[/tex]
[tex]M=1.40\cdot 10^{16}kg[/tex]
[tex]R=8.20 km=8200 m[/tex]
[tex]h=6.00 km = 6000 m[/tex]
Substituting into the formula, we find:
[tex]v=\sqrt{\frac{2(6.67\cdot 10^{-11})(1.40\cdot 10^{16}kg)}{8200 m+6000 m}}=11.47 m/s[/tex]