Answer:
32 units
Step-by-step explanation:
We have a quadrilateral ABCD and we are given the following coordinates for these vertices:
A (-11,-6)
B (-3,0)
C (1,0)
D (1,-6)
AB = [tex]\sqrt{(0-(-6))^2+(-3-(-11)^2} = \sqrt{36+64} =\sqrt{100}[/tex] = 10 units
BC = [tex]\sqrt{(0-0)^2+(1-(-3)^2} = \sqrt{0+16} =\sqrt{16}[/tex] = 4 units
CD = [tex]\sqrt{(0-(-6))^2+(1-1^2} = \sqrt{36+0} =\sqrt{36}[/tex] = 6 units
AD = [tex]\sqrt{(-6-(-6))^2+(1-(-11)^2} = \sqrt{0+144} =\sqrt{144}[/tex] = 12 units
Perimeter of ABCD = [tex]10+4+6+12[/tex] = 32 units