Answer:
sinθ = 0.9191; cosθ = -0.3939; tanθ = -2.333
Step-by-step explanation:
The point (-3, 7) is in the second quadrant, so θ is an obtuse angle as in the figure below.
AB = 7
OA = -3
According to Pythagoras,
OB² = OA² + AB² = (-3)² + 7² = 9 + 49 = 58
OB = √58 = 7.616
[tex]\begin{array}{rcccccr}\sin\theta & = & \frac{AB }{OB} & = &\frac{7 }{7.616 } & = & 0.9191\\\\\cos\theta & = & \frac{OA }{OB} & = & \frac{-3 }{7.616 } & = & -0.3939 \\\\\tan\theta & = & \frac{AB }{OA} & = & \frac{7 }{-3 } & = & -2.333 \\\end{array}\\[/tex]
sinθ = 0.9191; cosθ = -0.3939; tanθ = -2.333