Respuesta :
Answer:
ln(-256) = 5.54 + πi
Step-by-step explanation:
We have to find ln(-256)
This question belongs to the complex domain which says
ln(-1)= πi
So ln(-256)= ln(256*(-1))
And we know that ln(a*b)= ln(a)+ln(b)
So, ln(256*(-1))= ln(256)+(ln-1)
as ln(-1)= πi, putting value and finding ln(256) we get,
ln(256*(-1)) = 5.54 + πi
Answer:
[tex]5.5479 + \pi i[/tex]
Step-by-step explanation:
In the real domain, [tex] l n ( x ) [/tex] is undefined for [tex]x < 0[/tex].
And because most of the calculators run in the real domain only so they will show an error (E) for this.
[tex]ln(-1) = \pi i[/tex]
We know that [tex]ln(a \times b) = ln(a) + ln(b)[/tex].
[tex]ln(-265.7) = ln[256.7 * (-1)][/tex]
[tex]ln(256.7) + ln(-1) = ln(256.7) + \pi i = 5.5479 + \pi i[/tex]
