Respuesta :

Answer:

ln(-256) = 5.54 +  πi

Step-by-step explanation:

We have to find ln(-256)

This question belongs to the complex domain which says

ln(-1)= πi

So ln(-256)= ln(256*(-1))

And we know that ln(a*b)= ln(a)+ln(b)

So, ln(256*(-1))= ln(256)+(ln-1)

as ln(-1)= πi, putting value and finding ln(256) we get,

   ln(256*(-1)) = 5.54 +  πi

Answer:

[tex]5.5479 + \pi i[/tex]

Step-by-step explanation:

In the real domain, [tex] l n ( x ) [/tex] is undefined for [tex]x < 0[/tex].

And because most of the calculators run in the real domain only so they will show an error (E) for this.

[tex]ln(-1) = \pi i[/tex]

We know that [tex]ln(a \times b) = ln(a) + ln(b)[/tex].

[tex]ln(-265.7) = ln[256.7 * (-1)][/tex]

[tex]ln(256.7) + ln(-1) = ln(256.7) + \pi i = 5.5479 + \pi i[/tex]

RELAXING NOICE
Relax