Respuesta :
Triangle STU is congruent to triangle UTX is the missing step. AAS (angle-angle-side) is a method of proving 2 triangles congruent, and using the already proved information, you can find the triangles that are congruent by AAS.
Answer:
5. Statement: [tex]\triangle TXU\cong \triangle TSV[/tex]
Step-by-step explanation:
Given, triangle STU is an equilateral triangle.
[tex]\angle TXU \cong \angle TVS[/tex]
To prove that [tex]UX \cong SV[/tex]
Proof:
1. Statement: [tex]\angle TXU \cong \angle TVS[/tex]
Reason: Given in question .
2. Statement: [tex]\angle STV \cong \angle UTX[/tex]
Reason: By using reflection proeperty of rotation.
3. Statement: [tex]\triangle STU[/tex] is an equilateral triangle.
Reason: [tex]\angle STU= \angle TSU=\angle SUT[/tex] given.
4. Statement: [tex]ST \cong UT[/tex]
Reason: Sides of equilateral triangle STU.
5. [tex]\tringle TXU \cong \triangle TSV[/tex]
Reason: AAS congruence property of triangle.
6. Statement: [tex]UX\cong SV[/tex]
Reason: CPCT ( corresponding parts of congruence triangles).