Answer:
Option a.
[tex]\lim_{x \to \frac{\pi}{2}}(3e)^{xcosx}=1[/tex]
Step-by-step explanation:
You have the following limit:
[tex]\lim_{x \to \frac{\pi}{2}{(3e)^{xcosx}[/tex]
The method of direct substitution consists of substituting the value of [tex]\frac{\pi}{2}[/tex] in the function and simplifying the expression obtained.
We then use this method to solve the limit by doing [tex]x=\frac{\pi}{2}[/tex]
Therefore:
[tex]\lim_{x \to \frac{\pi}{2}}{(3e)^{xcosx} = \lim_{x\to \frac{\pi}{2}}{(3e)^{\frac{\pi}{2}cos(\frac{\pi}{2})}[/tex]
[tex]cos(\frac{\pi}{2})=0\\[/tex]
By definition, any number raised to exponent 0 is equal to 1
So
[tex]\lim_{x\to \frac{\pi}{2}}{(3e)^{\frac{\pi}{2}cos(\frac{\pi}{2})} = \lim_{x\to \frac{\pi}{2}}{(3e)^{\frac{\pi}{2}(0)}\\\\[/tex]
[tex]\lim_{x\to \frac{\pi}{2}}{(3e)^{0}} = 1[/tex]
Finally
[tex]\lim_{x \to \frac{\pi}{2}}(3e)^{xcosx}=1[/tex]