Respuesta :
Answer:
49
Step-by-step explanation:
1. Calculate the constant of proportionality
Q = k/p²
k = Qp² Multiplied each side by p²
= 36 × 7²
= 36 × 49
= 1764
2. Calculate the new value of Q
Q = 1764/p²
= 1764/36
Q = 49
The value of Q can be calculated by using the formula constant for proportionality formula.
The value of Q is 49.
Given:
[tex]Q=36[/tex] when [tex]P=7[/tex].
As per the question Q varies inversely as the square of p.
[tex]Q=\frac{k}{p^2}[/tex]
Where [tex]k[/tex] is proportionality constant.
Rearrange the above equation for [tex]k[/tex].
[tex]k=Qp^2[/tex]
Substitute the value.
[tex]k=36\times 7^2\\=36\times 49\\=1764[/tex]
Calculate the value of Q for p=6.
[tex]Q=\frac{k}{p^2}[/tex]
Substitute the value of proportionality constant.
[tex]Q=\frac{1764}{6^2}\\Q=\frac{1764}{36}\\Q=49[/tex]
Thus, the value of [tex]Q[/tex] is [tex]49[/tex].
Learn more about proportionality constant here:
https://brainly.com/question/13028484