[tex]x=r\cos t[/tex]
[tex]y=r\sin t[/tex]
[tex]\mathrm dA=\mathrm dx\,\mathrm dy=r\,\mathrm dr\,\mathrm d\theta[/tex]
The region [tex]R[/tex] is given for [tex]0\le r\le4[/tex] and [tex]\dfrac\pi4\le t\le\dfrac\pi2[/tex]. So we have
[tex]\displaystyle\iint_R(4x-y)\,\mathrm dA=\int_{\pi/4}^{\pi/2}\int_0^4(4r\cos t-r\sin t)r\,\mathrm dr\,\mathrm dt=\frac{32}3(8-5\sqrt2)[/tex]