Evaluate the given integral by changing to polar coordinates. R (4x − y) dA, where R is the region in the first quadrant enclosed by the circle x2 + y2 = 16 and the lines x = 0 and y = x

Respuesta :

[tex]x=r\cos t[/tex]

[tex]y=r\sin t[/tex]

[tex]\mathrm dA=\mathrm dx\,\mathrm dy=r\,\mathrm dr\,\mathrm d\theta[/tex]

The region [tex]R[/tex] is given for [tex]0\le r\le4[/tex] and [tex]\dfrac\pi4\le t\le\dfrac\pi2[/tex]. So we have

[tex]\displaystyle\iint_R(4x-y)\,\mathrm dA=\int_{\pi/4}^{\pi/2}\int_0^4(4r\cos t-r\sin t)r\,\mathrm dr\,\mathrm dt=\frac{32}3(8-5\sqrt2)[/tex]

ACCESS MORE