Respuesta :
Answer:
[tex]\large\boxed{-5i=5\left(\cos\dfrac{3\pi}{2}+i\sin\dfrac{3\pi}{2}\right)}[/tex]
Step-by-step explanation:
Look at the picture.
The trigonometric form of a complex number:
[tex]z=|z|(\cos\alpha+i\sin\alpha)[/tex]
where:
[tex]|z|=\sqrt{a^2+b^2}\\\\\cos\alpha=\dfrac{a}{|z|}\\\\\sin\alpha=\dfrac{b}{|z|}[/tex]
We have the complex number z = - 5i → z = 0 + (-5)i → a = 0, b = -5.
Substitute:
[tex]|z|=\sqrt{0^2+(-5)^2}=\sqrt{0+25}=\sqrt{25}=5\\\\\cos\theta=\dfrac{0}{5}=0\\\\\sin\theta=\dfrac{-5}{5}=-1[/tex]
Therefore
[tex]\theta=\dfrac{3\pi}{2}[/tex]
Finally:
[tex]-5i=5\left(\cos\dfrac{3\pi}{2}+i\sin\dfrac{3\pi}{2}\right)[/tex]

Answer:
Choices:
A) 5(cos 270° + i sin 270°)
B) 5(cos 180° + i sin 180°)
C) 5(cos 90° + i sin 90°)
D) 5(cos 0° + i sin 0°)
Step-by-step explanation:
-5i can be written as 0 + (-5)i
It is in the form a+bi where a = 0 and b =-5
So the point (a,b) is (0,-5)
The distance from the origin to this point is 5 units, therefore r = 5. This is the magnitude.
The angle is 270 degrees as shown in the attached image. You start on the positive x axis and rotate until you reach the point (0,-5)
This is why the answer is choice A) 5(cos(270) + i*sin(270))