Need help please assist me find the area of a regular hexagon

Answer:
The area of the regular hexagon is [tex]166.3\ units^{2}[/tex]
Step-by-step explanation:
we know that
The area of a regular hexagon can be divided into 6 equilateral triangles
so
step 1
Find the area of one equilateral triangle
[tex]A=\frac{1}{2}(b)(h)[/tex]
we have
[tex]b=r=8\ units[/tex]
[tex]h=4\sqrt{3}\ units[/tex] ----> is the apothem
substitute
[tex]A=\frac{1}{2}(8)(4\sqrt{3})[/tex]
[tex]A=16\sqrt{3}\ units^{2}[/tex]
step 2
Find the area of 6 equilateral triangles
[tex]A=(6)16\sqrt{3}=96\sqrt{3}=166.3\ units^{2}[/tex]