Respuesta :

Answer:

The area of the regular hexagon is [tex]166.3\ units^{2}[/tex]

Step-by-step explanation:

we know that

The area of a regular hexagon can be divided into 6 equilateral triangles

so

step 1

Find the area of one equilateral triangle

[tex]A=\frac{1}{2}(b)(h)[/tex]

we have

[tex]b=r=8\ units[/tex]

[tex]h=4\sqrt{3}\ units[/tex] ----> is the apothem

substitute

[tex]A=\frac{1}{2}(8)(4\sqrt{3})[/tex]

[tex]A=16\sqrt{3}\ units^{2}[/tex]

step 2

Find the area of 6 equilateral triangles

[tex]A=(6)16\sqrt{3}=96\sqrt{3}=166.3\ units^{2}[/tex]

ACCESS MORE