Respuesta :

Answer:

[tex]x=4\ units[/tex]

Step-by-step explanation:

step 1

Find the length of JL

In the right triangle KLJ

[tex]sin(30\°)=\frac{JL}{8\sqrt{2}}[/tex]

[tex]sin(30\°)=\frac{1}{2}[/tex]

so

[tex]\frac{1}{2}=\frac{JL}{8\sqrt{2}}[/tex]

[tex]JL=4\sqrt{2}\ units[/tex]

step 2

Find the value of x

In the right triangle JLM

[tex]sin(45\°)=\frac{x}{4\sqrt{2}}[/tex]

[tex]sin(45\°)=\frac{\sqrt{2}}{2}[/tex]

so

[tex]\frac{\sqrt{2}}{2}=\frac{x}{4\sqrt{2}}[/tex]

[tex]x=4\ units[/tex]

ACCESS MORE