Respuesta :

Answer:

The measure of angle BEA is [tex]110\°[/tex]

Step-by-step explanation:

we know that

The measure of the inner angle is the semi-sum of the arcs comprising it and its opposite

so

[tex]m<BEA=\frac{1}{2}(arc\ AB+arc\ CD)[/tex]

step 1

Find the measure of arc AD

Remember that the inscribed angle is half that of the arc it comprises.

[tex]24\°=\frac{1}{2}(arc\ AD)[/tex]

[tex]arc\ AD=48\°[/tex]

step 2

Find the measure of arc BC

Remember that the inscribed angle is half that of the arc it comprises.

[tex]46\°=\frac{1}{2}(arc\ BC)[/tex]

[tex]arc\ BC=92\°[/tex]

step 3

Find the measure of (arc AB + arc CD)

[tex]arc\ AB+arc\ CD=360\°-(arc\ AD+arc\ BC)[/tex]

[tex]arc\ AB+arc\ CD=360\°-(48\°+92\°)[/tex]

[tex]arc\ AB+arc\ CD=220\°[/tex]

step 4

Find the measure of angle BEA

[tex]m<BEA=\frac{1}{2}(arc\ AB+arc\ CD)[/tex]

[tex]m<BEA=\frac{1}{2}(220\°)=110\°[/tex]

ACCESS MORE