Respuesta :

Answer: option a.

Step-by-step explanation:

Given the expression [tex]\sqrt{8^{17}}[/tex], you need to remember:

The Product of powers property:

[tex]a^m*a^n=a^{(m+n)}[/tex]

The Power of a power property:

[tex](a^m)^n=a^{mn}[/tex]

And:

[tex]\sqrt[n]{a^n}=a[/tex]

Therefore, as the index of the radical is 2, you can rewrite [tex]8^{17}[/tex] as:

[tex]8^{17}=8^{16}*8[/tex]

Rewrite this and simplify. Then:

 [tex]=\sqrt{8^{17}}[/tex]

[tex]=\sqrt{8^{16}*8}=\sqrt{8^{16}}\sqrt{8}=\sqrt{(8^{8})^2}\sqrt{8}=8^8\sqrt{8}[/tex]

 

This matches with the option a.

ACCESS MORE