Answer:
Part 1) The length of the mat is [tex]12\ ft[/tex]
Part 2) The area of the mat is [tex]72\ ft^{2}[/tex]
Step-by-step explanation:
Part 1)
Let
x-----> the length of the math
y----> the width of the math
we know that
The perimeter of a rectangle is equal to
[tex]P=2(x+y)[/tex]
we have
[tex]P=36\ ft[/tex]
so
[tex]36=2(x+y)[/tex]
[tex]18=(x+y)[/tex] ------> equation A
[tex]x=2y[/tex] ------> equation B
substitute equation B in equation A and solve for y
[tex]18=(2y+y)[/tex]
[tex]3y=18[/tex]
[tex]y=6\ ft[/tex]
Find the value of x
[tex]x=2(6)=12\ ft[/tex]
Part 2) we know that
The area of a rectangle is equal to
[tex]A=xy[/tex]
we have
[tex]x=12\ ft[/tex]
[tex]y=6\ ft[/tex]
substitute the values
[tex]A=(12)(6)=72\ ft^{2}[/tex]