Respuesta :

Answer: [tex]h(x)=-4x^2-6x+6[/tex]

Step-by-step explanation:

To find the function h(x), you need to subtract the function [tex]f(x)=8x^2-2x+3[/tex] and the function [tex]g(x)=12x^2+4x-3[/tex].

[tex]h(x)=f(x)-g(x)\\h(x)=8x^2-2x+3-(12x^2+4x-3)[/tex]

Distribute the negative sign:

[tex]h(x)=8x^2-2x+3-12x^2-4x+3[/tex]

Now you can add the like terms:

[tex]h(x)=-4x^2-6x+6[/tex]

Therefore, you get that the function h(x) is:

 [tex]h(x)=-4x^2-6x+6[/tex]

Answer:

h(x) =  - 4x² - 6x + 6

Step-by-step explanation:

It is given that,

f(x) = 8x² - 2x + 3  and

g(x) = 12x² + 4x - 3

To find h(x)

h(x) = f(x) - g(x)

h(x) = ( 8x² - 2x + 3) - (12x² + 4x - 3)

  = 8x² - 2x + 3 - 12x² - 4x + 3

  = 8x² - 12x² - 2x - 4x + 3 + 3

  = - 4x² - 6x + 6

Therefore h(x) =  - 4x² - 6x + 6

ACCESS MORE