Respuesta :

Answer:

[tex](x-4)^{2}+(y-4)^{2}=32[/tex]

Step-by-step explanation:

we know that

The equation if the circle into center radius form is equal to

[tex](x-h)^{2}+(y-k)^{2}=r^{2}[/tex]

where

(h,k) is the center of the circle

r is the radius

In this problem we have

[tex](h,k)=(4,4)[/tex]

Find the radius of the circle

we know that

The distance between the center and any point that lie on the circle is equal to the radius

Let

[tex]A(0,0),B(4,4)[/tex]

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

substitute the values

[tex]r=\sqrt{(4-0)^{2}+(4-0)^{2}}[/tex]

[tex]r=\sqrt{(4)^{2}+(4)^{2}}[/tex]

[tex]r=\sqrt{32}\ units[/tex]

substitute in the equation of the circle

[tex](x-h)^{2}+(y-k)^{2}=r^{2}[/tex]

[tex](x-4)^{2}+(y-4)^{2}=(\sqrt{32})^{2}[/tex]

[tex](x-4)^{2}+(y-4)^{2}=32[/tex]