Respuesta :
[tex]\bf \qquad \qquad \textit{inverse proportional variation} \\\\ \textit{\underline{y} varies inversely with \underline{x}}\qquad \qquad y=\cfrac{k}{x}\impliedby \begin{array}{llll} k=constant\ of\\ \qquad variation \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \cfrac{xy}{2}=28\implies \stackrel{\textit{cross-multiplying}}{xy=56}\implies y=\cfrac{\stackrel{\stackrel{k}{\downarrow }}{56}}{x}[/tex]
Answer:
The equation that represents an inverse variation with a constant of 56 is:
Option: D
D. [tex]\dfrac{xy}{2}=28[/tex]
Step-by-step explanation:
Inverse Variation--
It is a relationship between two variables such that it is given in the form that:
If x and y are two variables then they are said to be in inverse variation if there exist a constant k such that:
[tex]y=\dfrac{k}{x}[/tex]
i.e.
[tex]xy=k[/tex]
Here the constant of variation is 56
i.e. k=56
Hence, we have:
[tex]xy=56\\\\i.e.\\\\xy=28\times 2\\\\i.e.\\\\\dfrac{xy}{2}=28[/tex]
Hence, option: D is the correct answer.