Respuesta :

[tex]\bf \qquad \qquad \textit{inverse proportional variation} \\\\ \textit{\underline{y} varies inversely with \underline{x}}\qquad \qquad y=\cfrac{k}{x}\impliedby \begin{array}{llll} k=constant\ of\\ \qquad variation \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \cfrac{xy}{2}=28\implies \stackrel{\textit{cross-multiplying}}{xy=56}\implies y=\cfrac{\stackrel{\stackrel{k}{\downarrow }}{56}}{x}[/tex]

Answer:

The equation that represents an inverse variation with a constant of 56 is:

             Option: D

         D.   [tex]\dfrac{xy}{2}=28[/tex]                  

Step-by-step explanation:

Inverse Variation--

It is a relationship between two variables such that it is given in the form that:

If x and y are two variables then they are said to be in inverse variation if there exist  a constant k such that:

[tex]y=\dfrac{k}{x}[/tex]

i.e.

[tex]xy=k[/tex]

Here the constant of variation is 56

i.e. k=56

Hence, we have:

[tex]xy=56\\\\i.e.\\\\xy=28\times 2\\\\i.e.\\\\\dfrac{xy}{2}=28[/tex]

              Hence, option: D is the correct answer.