What is the perimeter of the trapezoid with vertices Q(8, 8), R(14, 16), S(20, 16), and T(22, 8)? Round to the nearest hundredth, if necessary. units

Respuesta :

Answer:

The perimeter is 38.25 units

Step-by-step explanation:

The perimeter of the tra-pezoid is the distance around it.

The length of the bases can be found using the absolute value method.

|RS|=|20-14|=6 units.

|TQ|=|22-8|=14

Recall the distance formula;

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

We use the distance to find the non parallel sides.

[tex]|ST|=\sqrt{(20-22)^2+(16-8)^2} =8.25[/tex] units.

and

[tex]|QR|=\sqrt{(8-14)^2+(16-8)^2} =10[/tex] units.

The perimeter of the tra-pezoid is

=14+10+6+8.25=38.25

Ver imagen kudzordzifrancis

Answer:

the answer is 38.25

Step-by-step explanation: