Answer:
1. The area of the triangle PQR is 40 cm^2.
2. 321.4 cubic cm
Step-by-step explanation:
1. We are given two triangles, ABC and PQR, which are similar to each other.
Given that area of the triangle ABC is [tex]40cm^2[/tex], we are to find the area of the triangle PQR.
For that, we can use the ratio method:
[tex] \frac { P Q R } { 4 0 } = \frac { 6 } { 4 } [/tex]
Area of triangle PQR = [tex] \frac { 6 \times 40 } { 4 } = 60cm^2 [/tex]
2. We are given the diameter of a spherical model to be 8.5 cm so its radius will be 4.25 cm.
Finding the volume of the spherical model as we know that the volume of a sphere is given by:
[tex]\frac{4}{3} \pi r^3[/tex]
Substituting the given value of radius in the formula to get:
Volume of spherical model = [tex]\frac{4}{3} \times 3.14 \times (4.25)^3[/tex] = 321.4 cubic cm