Respuesta :

Answer:

The solutions are

[tex]x=1+\sqrt{\frac{7}{3}}[/tex]

[tex]x=1-\sqrt{\frac{7}{3}}[/tex]

Step-by-step explanation:

we have

[tex]3x^{2}-6x-4=0[/tex]

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]3x^{2}-6x=4[/tex]

Factor the leading coefficient

[tex]3(x^{2}-2x)=4[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side

[tex]3(x^{2}-2x+1)=4+3[/tex]

[tex]3(x^{2}-2x+1)=7[/tex]

Rewrite as perfect squares

[tex]3(x-1)^{2}=7[/tex]

[tex](x-1)^{2}=\frac{7}{3}[/tex]

square root both sides

[tex]x-1=(+/-)\sqrt{\frac{7}{3}}[/tex]

[tex]x=1(+/-)\sqrt{\frac{7}{3}}[/tex]

[tex]x=1+\sqrt{\frac{7}{3}}[/tex]

[tex]x=1-\sqrt{\frac{7}{3}}[/tex]

Answer: is in picture below

Step-by-step explanation:

Ver imagen tanawansalarug