Respuesta :

Answer:

D.  [tex]f^{-1}(x)=\frac{x-5}{2}[/tex]

Step-by-step explanation:

The given function is

[tex]f(x)=2x+5[/tex]

Let [tex]y=2x+5[/tex]

Interchange  x and y.

[tex]x=2y+5[/tex]

Solve for y.

[tex]x-5=2y[/tex]

Divide both sides by 2

[tex]\frac{x-5}{2} =y[/tex]

Hence [tex]f^{-1}(x)=\frac{x-5}{2}[/tex]

Answer: OPTION D

Step-by-step explanation:

To find the inverse of the function given in the problem, you must apply the proccedure shown below:

1- Rewrite the function:

[tex]y=2x+5[/tex]

2- You must solve for x from the functionn, as following:

  • Subtract 5 from both sides of the function.
  • Divide both sides of the function by 2.
  • Then:

[tex]y-5=2x\\\\x=\frac{y-5}{2}[/tex]

  • Rewrite the function as following (Substitute [tex]x=f^{-1}(x)[/tex] and [tex]y=x[/tex]:

[tex]f^{-1}(x)=\frac{x-5}{2}[/tex]