Respuesta :
Answer:
D. [tex]f^{-1}(x)=\frac{x-5}{2}[/tex]
Step-by-step explanation:
The given function is
[tex]f(x)=2x+5[/tex]
Let [tex]y=2x+5[/tex]
Interchange x and y.
[tex]x=2y+5[/tex]
Solve for y.
[tex]x-5=2y[/tex]
Divide both sides by 2
[tex]\frac{x-5}{2} =y[/tex]
Hence [tex]f^{-1}(x)=\frac{x-5}{2}[/tex]
Answer: OPTION D
Step-by-step explanation:
To find the inverse of the function given in the problem, you must apply the proccedure shown below:
1- Rewrite the function:
[tex]y=2x+5[/tex]
2- You must solve for x from the functionn, as following:
- Subtract 5 from both sides of the function.
- Divide both sides of the function by 2.
- Then:
[tex]y-5=2x\\\\x=\frac{y-5}{2}[/tex]
- Rewrite the function as following (Substitute [tex]x=f^{-1}(x)[/tex] and [tex]y=x[/tex]:
[tex]f^{-1}(x)=\frac{x-5}{2}[/tex]