Respuesta :
Answer:
A
Step-by-step explanation:
I'm assuming you already know how to do it and just need an answer.
The difference of the polynomial will be [tex]- 6x^4y-2x^3y^2 + 9x^2y^3 - 3xy^4 + y^5[/tex]
Given the polynomial function
[tex](-2x^3y^2 + 4x^2y^3 - 3xy^4) - (6x^4y - 5x^2y^3 - y^5)[/tex]
Expand the parenthesis to have:
[tex]-2x^3y^2 + 4x^2y^3 - 3xy^4 - 6x^4y + 5x^2y^3 + y^5)[/tex]
Collect the like terms:
[tex]-2x^3y^2 + 4x^2y^3 + 5x^2y^3- 3xy^4 - 6x^4y + y^5\\-2x^3y^2 + 9x^2y^3 - 3xy^4 - 6x^4y + y^5[/tex]
Rearrange:
[tex]- 6x^4y-2x^3y^2 + 9x^2y^3 - 3xy^4 + y^5[/tex]
Hence the difference of the polynomial will be [tex]- 6x^4y-2x^3y^2 + 9x^2y^3 - 3xy^4 + y^5[/tex]
Learn more here: https://brainly.com/question/10417192