Respuesta :

Answer:

A

Step-by-step explanation:

I'm assuming you already know how to do it and just need an answer.

The difference of the polynomial will be [tex]- 6x^4y-2x^3y^2 + 9x^2y^3 - 3xy^4 + y^5[/tex]

Given the polynomial function

[tex](-2x^3y^2 + 4x^2y^3 - 3xy^4) - (6x^4y - 5x^2y^3 - y^5)[/tex]

Expand the parenthesis to have:

[tex]-2x^3y^2 + 4x^2y^3 - 3xy^4 - 6x^4y + 5x^2y^3 + y^5)[/tex]

Collect the like terms:

[tex]-2x^3y^2 + 4x^2y^3 + 5x^2y^3- 3xy^4 - 6x^4y + y^5\\-2x^3y^2 + 9x^2y^3 - 3xy^4 - 6x^4y + y^5[/tex]

Rearrange:

[tex]- 6x^4y-2x^3y^2 + 9x^2y^3 - 3xy^4 + y^5[/tex]

Hence the difference of the polynomial will be [tex]- 6x^4y-2x^3y^2 + 9x^2y^3 - 3xy^4 + y^5[/tex]

Learn more here: https://brainly.com/question/10417192