The transformation (x,y) (x+4,y-3 is performed on the segment AB.The imgae is the line segment A’B’ where point A’=(3,-3) and point B’ =(5,-3).What are the coordinates of A and B in the line segment AB

Respuesta :

Answer:

[tex]A= (-1,0)\\B=(1,0)[/tex]

Step-by-step explanation:

The transformation of the segment AB is:

[tex](x+4,\ y-3)[/tex]

Given the points of the line segment A'B':

[tex]A'=(3,-3)[/tex] and  [tex]B'=(5,-3)[/tex]

The coordinates of the points A and B in the line segment AB,can be calculated through this procedure:

For A:

x-coordinate:

Substitute the x-coordinate of A' (we can represent it with[tex]x_{(A')}[/tex]) into [tex]x_{(A')}=x_A+4[/tex] and solve for [tex]x_{A}[/tex], which is the x-coordinate of A:

[tex]x_{(A')}=x_A+4\\\\3=x_A+4\\\\3-4=x_A\\\\x_A=-1[/tex]

y-coordinate:

Substitute the y-coordinate of A' (we can represent it with[tex]y_{(A')}[/tex]) into [tex]y_{(A')}=y_A-3[/tex] and solve for [tex]y_{A}[/tex], which is the y-coordinate of A:

[tex]y_{(A')}=y_A-3\\\\-3=y_A-3\\\\-3+3=y_A\\\\y_A=0[/tex]

The point of A is: (-1,0)

For B:

x-coordinate:

Substitute the x-coordinate of B' (we can represent it with[tex]x_{(B')}[/tex]) into [tex]x_{(B')}=x_B+4[/tex] and solve for [tex]x_{B}[/tex], which is the x-coordinate of B:

[tex]x_{(B')}=x_B+4\\\\5=x_B+4\\\\5-4=x_B\\\\x_B=1[/tex]

y-coordinate:

Substitute the y-coordinate of B' (we can represent it with[tex]y_{(B')}[/tex]) into [tex]y_{(B')}=y_B-3[/tex] and solve for [tex]y_{B}[/tex], which is the y-coordinate of B:

[tex]y_{(B')}=y_B-3\\\\-3=y_B-3\\\\-3+3=y_B\\\\y_B=0[/tex]

The point of B is: (1,0)