Respuesta :
Answer:
[tex]A= (-1,0)\\B=(1,0)[/tex]
Step-by-step explanation:
The transformation of the segment AB is:
[tex](x+4,\ y-3)[/tex]
Given the points of the line segment A'B':
[tex]A'=(3,-3)[/tex] and [tex]B'=(5,-3)[/tex]
The coordinates of the points A and B in the line segment AB,can be calculated through this procedure:
For A:
x-coordinate:
Substitute the x-coordinate of A' (we can represent it with[tex]x_{(A')}[/tex]) into [tex]x_{(A')}=x_A+4[/tex] and solve for [tex]x_{A}[/tex], which is the x-coordinate of A:
[tex]x_{(A')}=x_A+4\\\\3=x_A+4\\\\3-4=x_A\\\\x_A=-1[/tex]
y-coordinate:
Substitute the y-coordinate of A' (we can represent it with[tex]y_{(A')}[/tex]) into [tex]y_{(A')}=y_A-3[/tex] and solve for [tex]y_{A}[/tex], which is the y-coordinate of A:
[tex]y_{(A')}=y_A-3\\\\-3=y_A-3\\\\-3+3=y_A\\\\y_A=0[/tex]
The point of A is: (-1,0)
For B:
x-coordinate:
Substitute the x-coordinate of B' (we can represent it with[tex]x_{(B')}[/tex]) into [tex]x_{(B')}=x_B+4[/tex] and solve for [tex]x_{B}[/tex], which is the x-coordinate of B:
[tex]x_{(B')}=x_B+4\\\\5=x_B+4\\\\5-4=x_B\\\\x_B=1[/tex]
y-coordinate:
Substitute the y-coordinate of B' (we can represent it with[tex]y_{(B')}[/tex]) into [tex]y_{(B')}=y_B-3[/tex] and solve for [tex]y_{B}[/tex], which is the y-coordinate of B:
[tex]y_{(B')}=y_B-3\\\\-3=y_B-3\\\\-3+3=y_B\\\\y_B=0[/tex]
The point of B is: (1,0)