contestada

What is the truth value for the following conditional statement?
p: true
q: true

∼p → q

F T → T
T T → F
F T → F
T F → T

Respuesta :

frika

Answer:

FT→T

Step-by-step explanation:

If p is true, then ~p is false.

Now note that

  • If a and b are both true, then a→b is true.
  • If a is true, b is false, then a→b is false.
  • If a is false, b is true, then a→b is true.
  • If a and b are both false, then a→b is true.

In your case, both~p is false and q is true, then ~p→q is true too (or FT→T)

Answer:

[tex] F -T\rightarrow T[/tex].

Step-by-step explanation:

We are given that

p: true

q: true

The condition statement [tex]\neg p\rightarrow q [/tex]

If p is true then[tex]\neg p [/tex] is false.

If p is false then [tex]\neg p[/tex] is true.

If[tex]\ neg p [/tex] is false and q is true then the value of [tex]\neg p \rightarrow q[/tex] is true.

If  [tex]\neg p [/tex] is true and q is true then [tex]\neg p \rightarrow q[/tex] is true.

If[tex]\ neg p[/tex] is true and q is false then the value of [tex]\neg p \rightarrow q[/tex] is false.

If [tex]\neg p[/tex] is false and q is false then the value of [tex]\neg p \rightarrow q [/tex] is true.

[tex]F-T\rightarrow T[/tex]

[tex]T-F\rightarrow F[/tex]

[tex]F -F\rightarrow T[/tex]

[tex]T-F \rightarrow F[/tex].