Respuesta :
Answer:
S3 = 39
Step-by-step explanation:
* an = 3(3)^(n-1) is a geometric sequence
* The general rule of the geometric sequence is:
an = a(r)^(n-1)
Where:
a is the first term
r is the common difference between each consecutive terms
n is the position of the term in the sequence
The rules means:
- a1 = a , a2 = ar , a3 = ar² , a4 = ar³ , ........................
∵ an = 3(3)^(n-1)
∴ a = 3 and r = 3
∴ a1 = 3
∴ a2 = 3(3) = 9
∴ a3 = 3(3)² = 27
* S3 = a1 + a2 + a3
∴ S3 = 3 + 9 + 27 = 39
Note:
We can use the rule of the sum:
Sn = a(1 - r^n)/(1 - r)
S3 = 3(1 - 3³)/1 - 3 = 3(1 - 27)/-2 = 3(-26)/-2 =3(13) = 39
Answer:
The correct answer is S₃ = 39
Step-by-step explanation:
It is given that,
aₙ = 3(3)ⁿ⁻¹
To find a₁
a₁ = 3(3)¹⁻¹ = 3(3)°
= 3 * 1 = 3
To find a₂
a₂ = 3(3)²⁻¹ = 3(3)¹
= 3 * 3 = 9
To find a₃
a₃ = 3(3)³⁻¹ = 3(3)²
= 3 * 9 = 27
To find the value of S₃
S₃ = a₁ + a₂ + a₃
= 3 + 9 + 27 = 39
Therefore the correct answer is S₃ = 39