What is the equation of a line passing through (-3,7) and having a slip of -1/5
A.y=-5x+22
B.y=5x+33
C.y=1/5x+32/5
D.y=-1/5x+32/5
E.y=-1/5x+22

Respuesta :

gmany

Answer:

[tex]\large\boxed{D.\ y=-\dfrac{1}{5}x+\dfrac{32}{5}}[/tex]

Step-by-step explanation:

The slope-intercept form of an equation of a line:

[tex]y=mx+b[/tex]

m - slope

b - y-intercept

We have the slope m = -1/5. Substitute:

[tex]y=-\dfrac{1}{5}x+b[/tex]

Put the coordinates of the given point (-3, 7) to the equation:

[tex]7=-\dfrac{1}{5}(-3)+b[/tex]

[tex]7=\dfrac{3}{5}+b[/tex]            subtract 3/5 from both sides

[tex]6\dfrac{2}{5}=b\to b=\dfrac{6\cdot5+2}{5}=\dfrac{32}{5}[/tex]