Respuesta :

frika

Answer:

[tex]\dfrac{y^2}{36}-\dfrac{x^2}{45}=1.[/tex]

Step-by-step explanation:

Since vertices and foci lie on the y-axis, the equation of the hyperbola is

[tex]\dfrac{y^2}{b^2}-\dfrac{x^2}{a^2}=1.[/tex]

If the vertices are at points (0,±6), then [tex]b=6.[/tex]

If the foci are at points (0,±9), then [tex]c=9.[/tex]

Note that

[tex]c^2=b^2+a^2,[/tex]

then

[tex]9^2=6^2+a^2,\\ \\a^2=81-36,\\ \\a^2=45.[/tex]

The equation of the hyperbola is

[tex]\dfrac{y^2}{36}-\dfrac{x^2}{45}=1.[/tex]