Respuesta :

Answer:

[tex]V=250\ cm^{3}[/tex]

Step-by-step explanation:

step 1

Find the length of the base L

we know that

The surface area of a rectangular prism is equal to

[tex]SA=2B+PH[/tex]

where

B is the area of the base

P is the perimeter of the base

H is the height of the prism

substitute

[tex]SA=2(LW)+2(L+W)H[/tex]

we have

[tex]W=5\ cm[/tex]

[tex]H=10\ cm[/tex]

[tex]SA=250\ cm^{2}[/tex]

substitute in the formula and solve for L

[tex]250=2(5L)+2(L+5)10[/tex]

[tex]250=10L+20L+100[/tex]

[tex]30L=250-100[/tex]

[tex]L=5\ cm[/tex]

step 2

Find the volume of the rectangular prism

The volume is equal to

[tex]V=(LW)H[/tex]

we have

[tex]W=5\ cm[/tex]

[tex]L=5\ cm[/tex]

[tex]H=10\ cm[/tex]

substitute

[tex]V=(5*5)*10=250\ cm^{3}[/tex]

Answer:

250 CM3.

Step-by-step explanation: