Respuesta :
Answer:
[tex]V=250\ cm^{3}[/tex]
Step-by-step explanation:
step 1
Find the length of the base L
we know that
The surface area of a rectangular prism is equal to
[tex]SA=2B+PH[/tex]
where
B is the area of the base
P is the perimeter of the base
H is the height of the prism
substitute
[tex]SA=2(LW)+2(L+W)H[/tex]
we have
[tex]W=5\ cm[/tex]
[tex]H=10\ cm[/tex]
[tex]SA=250\ cm^{2}[/tex]
substitute in the formula and solve for L
[tex]250=2(5L)+2(L+5)10[/tex]
[tex]250=10L+20L+100[/tex]
[tex]30L=250-100[/tex]
[tex]L=5\ cm[/tex]
step 2
Find the volume of the rectangular prism
The volume is equal to
[tex]V=(LW)H[/tex]
we have
[tex]W=5\ cm[/tex]
[tex]L=5\ cm[/tex]
[tex]H=10\ cm[/tex]
substitute
[tex]V=(5*5)*10=250\ cm^{3}[/tex]