Answer:
[tex]cos(0\°)=-\frac{\sqrt{85}}{11}[/tex]
[tex]tan(0\°) = -\frac{6}{\sqrt{85}}\\\\[/tex]
Step-by-step explanation:
We know by definition that:
[tex]cos ^ 2(x) = 1-sin ^2(x)[/tex]
We also know that:
[tex]tan(x) = \frac{sin(x)}{cos(x)}[/tex]
[tex]sec(x) = \frac{1}{cos(x)}[/tex]
Then we can use these identities to solve the problem
if [tex]sin(0\°) = \frac{6}{11}[/tex] then [tex]cos^2(0\°) = 1-(\frac{6}{11})^2[/tex]
[tex]cos(0\°) = \±\sqrt{\frac{85}{121}}\\\\cos(0\°)=\±\frac{\sqrt{85}}{11}[/tex]
As [tex]sec(x) <0[/tex] then [tex]cos(x) <0[/tex]. Therefore we take the negative root:
[tex]cos(0\°)=-\frac{\sqrt{85}}{11}[/tex]
Now that we know [tex]sin(0\°)[/tex] and [tex]cos(0\°)[/tex] we can find [tex]tan(0\°)[/tex]
[tex]tan(0\°) = \frac{sin(0\°)}{cos(0\°)}\\\\tan(0\°) = \frac{\frac{6}{11}}{\frac{-\sqrt{85}}{11} }\\\\tan(0\°) = -\frac{6}{\sqrt{85}}\\\\[/tex]